a)
\(\left(2n+1\right)^3=27\)
\(\left(2n+1\right)^3=3^3\)
\(2n+1=3\)
\(2n=3+1\)
\(2n=4\)
\(n=4\div2\)
\(n=2\)
b)
\(\left(n+2\right)^2=\left(n+2\right)^4\)
\(\left(n+2\right)^4-\left(n+2\right)^2=0\)
\(\left(n+2\right)^2\cdot\left(n+2\right)^2-\left(n+2\right)^2\cdot1=0\)
\(\left(n+2\right)^2\cdot\left[\left(n+2\right)^2-1\right]=0\)
\(\Rightarrow\left(n+2\right)^2=0hoạc\left(n+2\right)^2-1=0\)
\(\left(n+2\right)^2=0\)
\(n+2=0\)
\(n=0+2\)
\(n=2\)
\(\left(n+2\right)^2-1=0\)
\(\left(n+2\right)^2=0+1\)
\(\left(n+2\right)^2=1\)
\(n+2=1\)
\(n=1+2\)
\(n=3\)
Vậy \(n\in\left\{2;3\right\}\)
(2n +1)3 = 33
=> 2n + 1 = 3
sau đó dễ rùi
a) (2n + 1)^3 = 27
(2n + 1)^3 = 3^3
2n + 1 = 3
2n = 3 - 1
2n = 2
n = 2:2
n = 1