Tìm các số thực x để \(x^2-1+\sqrt{143}\) và \(\frac{1}{x^2-1}-\sqrt{143}\)đều là các số nguyên
Có hay không giả trị của x để cho \(x+\sqrt{15}\)và \(\frac{1}{x}-\sqrt{15}\)đều là số nguyên
Tìm số thực dương để \(x+\sqrt{15}\)và \(\frac{1}{x}-\sqrt{15}\)
Tìm giá trị của a để (\(a+\sqrt{15}\)) và(\(\frac{1}{a}-\sqrt{15}\)) đều là các số nguyên
Tìm x biết : \(\left(4-\sqrt{15}\right)^x-3\left(4+\sqrt{15}\right)^x=-2\)
Cho x,y là các số thục sao cho \(x+\frac{1}{y}\)và \(y+\frac{1}{x}\)là các số nguyên . Chứng minh rằng : \(x^2y^2+\frac{1}{x^2y^2}\)là các số nguyên
a) Cho biểu thức
P= ($\frac{x}{x-1}$- $\frac{1}{\sqrt{x}-1}$- $\frac{1}{\sqrt{x}+1}$).($\frac{4\sqrt{x}-8}{x\sqrt{x}-4x+4\sqrt{x}}$), với x>0, x $\neq$1, x $\neq$4. Tìm các số nguyên x để P nhận giá trị nguyên dương.
b) Cho 3 số thực x,y,z thỏa mãn điều kiện: x+y+z=0 và xyz $\neq$0. Tính giá trị biểu thức
P= $\frac{x^2}{y^2+z^2-x^2}$ +$\frac{y^2}{z^2+x^2-y^2}$ +$\frac{z^2}{x^2+y^2-z^2}$
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(\left(x\ge0;x\ne25\right)\)
a, Rút gọn P. Tìm các số thực x để P > -2.
b, Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên.
Tìm các số thực x để \(x^2-1+\sqrt{143}\)và \(\frac{1}{x^2-1}-\sqrt{143}\) đều là các số nguyênn
giải giúp mình vs ạ , thanks mn
Tìm số thực x để (x + căn bậc hai của 15) và (1/x - căn bậc hai của 15) đều là số nguyên.