\(xy=x-y\)
\(\Leftrightarrow xy-\left(x-y\right)=0\)
\(\Leftrightarrow xy-x+y=0\)
\(\Leftrightarrow x\left(y-1\right)+\left(y-1\right)=-1\)
\(\Leftrightarrow\left(y-1\right)\left(x+1\right)=-1=-1.1=1.\left(-1\right)\)
Lập bảng:
\(y-1\) | \(-1\) | \(1\) |
\(x+1\) | \(1\) | \(-1\) |
\(x\) | \(0\) | \(2\) |
\(y\) | \(0\) | \(-2\) |
Vậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(2,-2\right)\right\}\)
\(xy=x-y\)
\(\Rightarrow xy-x+y=0\)
\(\Rightarrow xy-x+y-1=-1\)
\(\Rightarrow x\left(y-1\right)+\left(y-1\right)=-1\)
\(\Rightarrow\left(x+1\right)\left(y-1\right)=-1\)
Vì \(x;y\in Z\)nên xét bảng:
x + 1 | 1 | -1 |
y - 1 | -1 | 1 |
x | 0 | -2 |
y | 0 | 2 |
Vậy \(\left(x;y\right)=\left(0;0\right)\)và \(\left(-2;2\right)\)