\(x^2y-x+xy=6\)
\(x\left(xy-1\right)+\left(xy-1\right)=6-1\)
\(\left(x+1\right)\left(xy-1\right)=5\)
Khi \(\hept{\begin{cases}x+1=1\\xy-1=5\end{cases}\Rightarrow\hept{\begin{cases}x=0\\0-1=5\left(\text{vô lý}\right)\end{cases}}}\)
Khi \(\hept{\begin{cases}x+1=-1\\xy-1=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)
Khi \(\hept{\begin{cases}x+1=5\\xy-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=\frac{1}{2}\notinℤ\end{cases}}}\)
Khi \(\hept{\begin{cases}x+1=-5\\xy-1=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-6\\y=0\end{cases}}}\)
Vậy \(\left(x;y\right)\in\left\{\left(-6;0\right);\left(-2;2\right)\right\}\)
\(x^2y-x+xy=6\)
\(\Rightarrow xy\left(x+1\right)-x-1=5\)
\(\Rightarrow\left(xy-1\right)\left(x+1\right)=5\)
Lập bảng là ra