A=\(\dfrac{4x^3-6x^2-8x}{2x-1}\)= \(\dfrac{2x^2\left(2x-1\right)-2x\left(2x-1\right)-5\left(2x-1\right)-5}{2x-1}\)= 2x-2x-\(\dfrac{5}{2x-1}\)
Để A \(\in\) Z thì 5 \(⋮\) ( 2x-1)
\(\Rightarrow\) 2x-1 \(\in\) Ư ( 5) =( 1;-1;5;-5)
2x-1 | 1 | -1 | -5 | 5 |
x | 1 | 0 | -2 | 3 |
Vậy x \(\in\) ( -2;0;1;3)
cái chỗ 2x- 2x -\(\dfrac{5}{2x-1}\) sửa lại thành 2x2-2x- \(\dfrac{5}{2x-1}\)