Mọi số tự nhiên đều viết dưới dạng 5k; 5k+1 ; 5k+2 ; 5k+3 ; 5k+4; 5k+5
- Nếu p = 5k+1 => p+14=5p+15= 5(p+3) chia hết cho 5 (loại)
- Nếu p = 5k+2 => p+8 = 5p+10 = 5(p+2) chia hết cho 5 (loại)
- Nếu p = 5k+3 => p+12 = 5p+15 = 5(p+3) chia hết cho 5 (loại)
- Nếu p = 5k+4 => p+6 = 5p+10 = 5(p+2) chia hết cho 5 (loại)
=> p chỉ có thể là 5k. Mà p là nguyên tố nên p = 5
Vậy p = 5
Học tốt! (Mình chỉ biết chứng minh vậy thôi)