Xét :
\(p=2\)\(\Rightarrow2p^2+1=9\)(là hợp số)
\(\Rightarrow\)Loại
\(p=3\)\(\Rightarrow2p^2+1=19\)(là số nguyên tố)
\(\Rightarrow\)Chọn
\(p>3\)\(\Rightarrow\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Với \(p=3k+1\left(k\inℕ^∗\right)\)
\(\Rightarrow2p^2+1=3\left(6k^2+4k+1\right)⋮3\)(là hợp số ,do \(p>3\))
Với \(p=3k+2\left(k\inℕ^∗\right)\)
\(\Rightarrow2p^2+1=3\left(6k^2+8k+3\right)⋮3\)(là hợp số ,do \(p>3\))
\(\Rightarrow\)Với \(p>3\)thì \(2p^2+1\)luôn là hợp số
Vậy \(p=3\)