Đặt: n4 + 2n3 + 2n2+ n + 7 = k2 (k \(\in\)N)
<=> (n2 + n)2 + (n2 + n) + 7 = k2
<=> 4(n2 + n)2 + 4(n2 + n) + 28 = 4k2
<=> 4k2 - (2n2 + 2n + 1)2 = 27
<=> (2k - 2n2 - 2n - 1)(2k + 2n2 + 2n + 1) = 27
Do 2k + 2n2 + 2n + 1 > 2k - 2n2 - 2n - 1
Lập bảng
2k + 2n2 + 2n + 1 | 27 | 9 | -1 | -3 |
2k - 2n2 - 2n - 1 | 1 | 3 | -27 | -9 |
(tự tính)