Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tien dang

Tìm số nguyên n sao cho:

a.n2-7 là bội của n+3

b.n+3 là bội của n2-7

Nicky Grimmie
20 tháng 1 2017 lúc 12:57

n^2-7 chia hết cho n+3

 hay \(\frac{n^2-7}{n+3}\)=\(\frac{\left(n-3\right)\left(n+3\right)+2}{n+3}\)=(n-3).\(\frac{2}{n+3}\)

=> \(\frac{2}{n+3}\)là số nguyên<=> 2 chia hết cho n+3=> n+3E ư(2)

Ư(2)={-2;-1;1;2}

ta có bảng sau 

n+3-2-112
n-5-4-2-1

vậy...

n+3 chia hết cho n^2-7

=> (n+3)(n-3) chia hết cho n^2-7

=> n^2-9 chia hết cho n^2-7

=>n^2-7-2 chia hết cho n^2-7

mà n^2 -7 chia hết cho n^2-7

=> n^2-7E Ư(2)={1;-1;2;-2}

ta có bảng sau

n^2-7-11-22
n^26859
nloạiloạiloại-3;3
     

vậy...


Các câu hỏi tương tự
dao thi huong
Xem chi tiết
dao thi huong
Xem chi tiết
dao thi huong
Xem chi tiết
dao thi huong
Xem chi tiết
dao thi huong
Xem chi tiết
Nguyễn Hà Lệ Linh
Xem chi tiết
Đỗ Thành Đức 	Nguyên
Xem chi tiết
Nguyễn Thị Phương Anh
Xem chi tiết
Đinh Triệu Yến Vi
Xem chi tiết