Ta có : n + 1 chia hết cho n + 1
\(\Rightarrow\)2(n + 1) chia hết cho n + 1
\(\Rightarrow\)2n + 2 chia hết cho n + 1
Mà theo đầu bài 2n + 3 chia hết cho n + 1
\(\Rightarrow\) (2n + 3) - (2n + 2) chia hết cho n + 1
\(\Rightarrow\) 2n + 3 - 2n - 2 chia hết cho n + 1
Tính ra ta được 1 chia hết cho n + 1
\(\Rightarrow\) n thuộc Ư(1) nên n = 1
Vậy số nguyên n cần tìm là 1
2n + 3 chia hết cho n + 1
2n + 2 + 1 chia hết cho n + 1
2.(n + 1) + 1 chia hết cho n + 1
=> 1 chia hết cho n + 1
=> n + 1 thuộc Ư(1) = {1 ; -1}
Xét 2 trường hợp , ta có :
n + 1 =1 => n = 0
n + 1 = -1 => n = -2
Ta có :
\(2n+3⋮n+1\)
\(\Rightarrow2n+1+2⋮n+1\)
Mà \(2n+1⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{-1;1;3;-3\right\}\)
Ta có bảng sau :
n + 1 | - 1 | 1 | - 3 | 3 |
n | - 2 | 0 | - 4 | 2 |
Vậy ........