a) 3n + 2 = 3n - 3 + 5 = 3(n - 1) + 5 chia hết cho n - 1 mà 3(n - 1) chia hết cho n - 1 nên 5 chia hết cho n - 1
=> n - 1\(\in\left\{-5;-1;1;5\right\}\)=> n\(\in\left\{-4;0;2;6\right\}\)
b) 3n - 24 = 3n - 12 - 12 = 3(n - 4) - 12 chia hết cho n - 4 mà 3(n - 4) chia hết cho n - 4 nên 12 chia hết cho n - 4
=> n - 4\(\in\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
=> n\(\in\left\{-8;-2;0;1;2;3;5;6;7;8;10;16\right\}\)
c) n2 + 5 = n2 - 1 + 6 = (n - 1)(n + 1) + 6 chia hết cho (n + 1) nên 6 chia hết cho n + 1
=> n + 1\(\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)=> n\(\in\left\{-7;-4;-3;-2;0;1;2;5\right\}\)
a) \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
\(\Rightarrow n-1\inƯ\left(5\right)\Rightarrow n-1\in\left\{-5;-1;1;5\right\}\Rightarrow n\in\left\{-4;0;2;6\right\}\)
b) \(\frac{3n-24}{n-4}=\frac{3n-12-12}{n-4}=\frac{3\left(n-4\right)-12}{n-4}=3+\frac{12}{n-4}\)
\(\Rightarrow n-4\inƯ\left(12\right)\Rightarrow n-4\in\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
\(\Rightarrow n\in\left\{-8;-2;0;1;2;3;5;6;7;8;10;16\right\}\)
c) \(\frac{n^2+5}{n+1}=\frac{n\left(n+1\right)-\left(n+1\right)+6}{n+1}=n-1+\frac{6}{n+1}\)
\(\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\Rightarrow n\in\left\{-7;-4;-3;-2;0;1;2;5\right\}\)