Tìm số nguyên dương x, y biết y^2 + xy^2 - x^2 = 4428
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
Tìm x,y biết: y=\(\sqrt[3]{9+\sqrt{x-1}}+\sqrt[3]{9-\sqrt{x-1}}\)
x,y nguyên dương.
Tìm các số nguyên dương thỏa mãn 9(x^2y^2+xy^3+y^2+x)=201/7 (xy^2+y^3+1)
Tìm tất cả số nguyên dương (x:y) thỏa \(\frac{x^2}{y}+\frac{y^2}{x}=9\)
câu 1: tìm các cặp số nguyên (x; y) thõa mản 10x+y=x2+y2+1
câu 2: tìm số nguyên dương nhỏ nhất thỏa : chia 2 dư 1, chia cho 3 dư 2, chia cho 4 dư 3 , chia cho 5 dư 4, chia cho 6 dư 5, chia cho 7 dư 6, chia cho 8 dư 7, chia cho 9 dư 8, chia cho 10 dư 9.
câu 3 tìm các cặp số (x; y) nguyên dương nghiệm đúng phương trình 5x4-8(12-y2)=2207352
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Tìm các số nguyên dương x,y,z thỏa mãn
a) \(1!+2!+...+x!=y^2\)
b) \(x!+y!=10z+9\)
Bài 1:Cho x, y là các số nguyên dương thỏa mãn x+y= 3.\(\sqrt{xy}\).Tinh x/ y
Bài 2: Tìm các số nguyên dương x, y thỏa mãn (1/x)+(1/y)=1/2