Cho các số dương x và y thỏa mãn: \(\sqrt{x}+\sqrt{y}-2\ge0\)
Chứng minh: \(xy\left(\sqrt{x}+\sqrt{y}-2\right)+x^2\left(\sqrt{x}-1\right)+y^2\left(\sqrt{y}-1\right)\ge0\)
Tìm số nguyên dương n thỏa mãn: \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{n^2}\right)=\frac{10066008}{20132015}\) .
Tìm số nguyên dương n thỏa mãn \(\sqrt{\left(3+2\sqrt{2}\right)^n}+\sqrt{\left(3-2\sqrt{2}\right)^n}=6\)
Chứng minh bất đẳng thức sau với mọi n nguyên dương:
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)
Chứng minh bất đẳng thức sau với mọi n nguyên dương:
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)
Tìm số nguyên dương n sao cho
\(\sqrt{\left(6-2\sqrt{5}\right)^n}+\sqrt{\left(6+2\sqrt{5}\right)^n}=6\)=6
M.n giúp mk nhaaa
Cho biểu thức:
\(S_n=\left(\sqrt{3}+\sqrt{2}\right)^n+\left(\sqrt{3}-\sqrt{2}\right)^n\)
với n nguyên dương.
cm: \(S_{2n}=S^{2_n}-2\)
1.cho biểu thức \(P=\left(\frac{2x+\sqrt{x}}{x\sqrt{x}-1}-\frac{2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a, rút gọn biểu thức P
b,tìm các giá trị của x để biểu thức P có giá trị nguyên
2.. tìm các cặp số nguyên(x;y) thỏa mãn \(x^2+xy-3x-y-5=0\)
3..giải phương trình \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
CMR:
Q = \(\frac{1}{2+\sqrt{3}}+\sqrt{3}-1+\sqrt{\left(3+2\sqrt{2}\right).\left(3-2\sqrt{2}\right)}\)
M = \(\left(5+\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right).\sqrt{5-\sqrt{21}}\)
N = \(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{2}}-\sqrt{\sqrt{5}+1}\)
Là số nguyên.