tồn tại hay không số nguyên dương m,n,p thỏa mãn đồng thời các điều kiện (m+n,mn-1)=1, (m-n; mn+1)=1 và \(\text{(m+n)^2+(mn-1)^2=p^2}\)?. (Trong đó (a,b) là ước chung lớn nhất của 2 số nguyên dương a và b)
tồn tại hay không số nguyên dương m,n,p thỏa mãn đồng thời các điều kiện (m+n,mn-1)=1, (m-n; mn+1)=1 và \(\text{(m+n)^2+(mn-1)^2=p^2}\)?. (Trong đó (a,b) là ước chung lớn nhất của 2 số nguyên dương a và b)
Tìm hệ số của x trong khai triển P x = 1 + n 4 x - 3 n 8 x 3 n - 4 với x > 0 . Biết n là số nguyên dương thỏa mãn điều kiện A n 2 + 3 C n n - 2 - C n + 1 3 = A n + 1 2 - 2 n .
A. 28
B. 78
C. 218
D. 80
tìm tất cả các bộ (n,k,p), với n,k là các số nguyên lớn hơn 1 và p là 1 số nguyên tố thỏa mãn \(n^5+n^4-2n^3-2n^2+1=p^k\)
tìm tất cả các bộ (n,k,p), với n,k là các số nguyên lớn hơn 1 và p là 1 số nguyên tố thỏa mãn \(n^5+n^4-2n^3-2n^2+1=p^k\)
Cho \(S=\left\{1,2,...,n\right\}\), \(A_i\subset S\), \(i=\overline{1,k}\) thỏa mãn các điều kiện sau:
i) \(\left|A_i\right|\ge\dfrac{n}{2},\forall i=\overline{1,k}\)
ii) \(\left|A_i\cap A_j\right|\le\dfrac{n}{4},\forall i\ne j;i,j=\overline{1,k}\)
Chứng minh rằng \(\left|A_1\cup A_2\cup...\cup A_k\right|\ge\dfrac{kn}{k+1}\)
Cho hàm số y = x 3 + 3 x có đồ thị là (C) . M 1 là điểm trên (C) có hoành độ bằng 1. Tiếp tuyến tại điểm M 1 cắt (C) tại điểm M 2 khác M 1 . Tiếp tuyến tại điểm M 2 cắt (C) tại điểm M 3 khác M 2 . Tiếp tuyến tại điểm M n - 1 cắt (C) tại điểm M n khác M n - 1 ( n ≥ 4 , n ∈ ℕ )? Tìm số tự nhiên n thỏa mãn điều kiện y n - 3 x n + 2 21 = 0
A. n = 7
B. n = 8
C. n = 22
D. n = 21
Cho hàm số f(n)= a n + 1 + b n + 2 + c n + 3 ( n ∈ N * ) với a, b, c là hằng số thỏa mãn a+b+c=0. Khẳng định nào sau đây đúng?
A. lim x → + ∞ f ( n ) = - 1
B. lim x → + ∞ f ( n ) = 1
C. lim x → + ∞ f ( n ) = 0
D. lim x → + ∞ f ( n ) = 2
Cho k, n là số nguyên dương thỏa mãn 1 ≤ k n. Đẳng thức nào sau đây đúng?
A . C n k - 1 + C n + 1 k = C n + 1 k + 1
B . C n - 1 k - 1 + C n k = C n + 1 k
C . C n k - 1 + C n k = C n + 1 k + 1
D . C n k - 1 + C n k = C n + 1 k