vì a-b+c => 3-3+3=3 và 1/3+1/3+1/3=3/3=1 =>a,b,c=3
vì a-b+c => 3-3+3=3 và 1/3+1/3+1/3=3/3=1 =>a,b,c=3
tìm các số nguyên dương a,b,c thỏa mãn đồng thời các điều kiện \(\sqrt{a-b+c}=\sqrt{a}-\sqrt{b}+\sqrt{c}\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cho các số nguyên dương a,b,c thỏa mãn đồng thời các điều kiện: \(\sqrt{a-b+c}=\sqrt{a}-\sqrt{b}+\sqrt{c}\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
MN giúp em với ạ em đang cần gấp. Cảm ơn
tìm các số nguyên dương a,b,c thỏa mãn các điều kiện \(\sqrt{a-b+c}=\sqrt{a}-\sqrt{b}+\sqrt{c}\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cho 3 số tự nhiên a,b,c thỏa mãn đồng thời 2 điều kiện: a-b là số nguyên tố và 3\(c^2\)=c(a+b)+ab. Chứng minh rằng 8c+1 là số chính phương
trục căn thức ở mẫu của các biểu thức sau
a) \(A=\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{2c}}\) trong đó a,b,c là các số dương thỏa mãn điều kiện c là trung bình nhân của 2 số là a,b
b) \(B=\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)trong đó a,b,c,d là các số dương thỏa mãn điều kiện ab=cd và a+b khác c+d
Cho a,b,c là các số dương thỏa mãn điều kiện a+b+c=1. Tìm GTNN của \(Q=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Cho a,b,claf 3 số dương thỏa mãn điều kiện \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}=2\)
Tìm GTLN của tích (a+b)(b+c)(c+a)
Cho a, b, c là các số dương thỏa mãn điều kiện a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
cho a,b,c là các số dương thỏa mãn điều kiện a + b + c = 1
Tìm giá trị nhỏ nhất của biểu thức A = \(\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)