số nguyên tố a;b;c nha
các bạn giúp mình với!
số nguyên tố a;b;c nha
các bạn giúp mình với!
1. Tìm số tự nhiên nhỏ hơn 1000 biết khi chia nó cho 3,5,7,11 ta được các số dư lần lượt là 1,2,3,9 .
2. Tìm tất cả các cặp số nguyên dương a, b biết rằng 7a = 11b và ƯCLN(a,b) = 45
3. Chứng minh rằng với a,b,c là các số nguyên khác 0 ta luôn có:
\(BCNN\left(a,b,c\right)=\frac{\text{Ư}CLN\left(a,b,c\right).BCNN\left(a,b\right).\text{Ư}CLN\left(b,c\right).\text{Ư}CLN\left(c,a\right)}{abc}\)
a; tìm các sô nguyên dương a,b,c. Biết rằng a^3 -b^3-c^3=3.abc và a^2 = 2 (b+c)
b; tìm số tự nhiên n thỏa mãn : 2.2^2+3.2^3+4.2^4+.........+n.2^n=2^n+34
a)Biết a, b, c là 3 số tự nhiên đôi một nguyên tố cùng nhau. Chứng minh: \(\left(ab+bc+ca;abc\right)=1\)
b) Tìm \(n\in N\)sao cho:
- \(\left(9n+49\right)\text{⋮}\left(7n+81\right)\)
- \(7\left(9+n\right)^2\text{⋮}9\left(7+n\right)^2\)
Bài 13*: Một nhà máy có khoảng 1700 đến 2000 công nhân. Biết rằng khi xếp hàng 18 thì dư 8 người, xếp hàng 20 thì dư 10 người, xếp hàng 25 thì dư 15 người. Tính số công nhân của nhà máy.
Bài 14*: Một đơn vị bộ đội khi xếp hàng 20 thì thiếu 5 người, xếp hàng 25 thì thiếu 20 người, xếp hàng 30 thì thiếu 15 người; nhưng xếp hàng 41 thì vừa đủ. Tính số người của đơn vị đó biết đơn vị này có không quá 1000 người.
Bài 15: Tìm các cặp số tự nhiên x,y, biết:
3) * \(2y\times\left(x+1\right)-x-7=0\) 4) * \(xy-2x+y=15\)
Bài 16*: Tìm các số tự nhiên a,b (a<b), biết:
1) a + b = 336 và ƯCLN(a,b) = 24. 2) ƯCLN(a,b) = 6 và BCNN(a,b) = 36. 3) BCNN(a,b) = 150 và a.b = 3750.
4) a.b = 180 và BCNN(a,b)=20.ƯCLN(a,b). 5) a + b = 40 và BCNN(a,b) = 7.ƯCLN(a,b). 6) ƯCLN(a,b) + BCNN(a,b) = 21.
Bài 17*: So sánh các lũy thừa sau: a) 828 và 1521. b) 591 và 1159. c) 3319 và 1523.
Bài 18*: Chứng minh rằng:
1) Hai số tự nhiên liên tiếp thì nguyên tố cùng nhau.
2) \(\left(5n+1\right)\) và \(\left(6n+1\right)\) là hai số nguyên tố cùng nhau \(\left(n\in N\right)\)
3) BCNN\(\left(6n+1;n\right)=\left(6n2+n\right)\) với \(\left(n\in N\right)\)
4) \(S=31+32+33+...+3100⋮120\)
5) \(S=102015+8⋮18\)
6) Nếu \(\left(7a+2b;31a=9b\right)⋮2015\Rightarrow a,b⋮2015\left(a,b\in N\right)\)
7) Nếu p và p + 4 là hai số nguyên tố (p>3) thì p + 8 sẽ phải là hợp số.
8) Nếu a và b là hai số nguyên tố cùng nhau thì hai số \(13a+4b\)và\(15a+7b\)hoặc cũng nguyên tố cùng nhau hoặc \(⋮31\)
Bài 19*:
1) Tìm ƯCLN\(\left(2n+1;9n+5\right)\)với\(n\in N\)
2) Tìm số nguyên tố p sao cho: \(p+4;p+10;p+14\)đều là số nguyên tố.
3) Tìm ba số lẻ liên tiếp đều là số nguyên tố.
4) Tìm số tự nhiên a nhỏ nhất thỏa mãn:\(a\div4\left(dư3\right),a\div17\left(dư9\right),a\div19\left(dư13\right)\)
5) Hãy tính tổng các ước số của \(A=217\times5\)
6) \(S=1+5+52+53+...+520\)Tìm số tự nhiên n thỏa mãn: \(4S=5n\)
7) Tìm số tự nhiên n, biết \(p=\left(n-2\right)\times\left(n2+n-5\right)\)là số nguyên tố.
8) Tìm số tự nhiên n, biết \(1+3+5+..+\left(2n=1\right)=169\)
9) Tìm số nguyên tố bé nhất trong ba số nguyên tố có tổng bằng 132.
10) Tìm hai số tự nhiên nhỏ nhất có đúng 18 ước số.
11) Tìm ba số tự nhiên liên tiếp có tích bằng 2184.
Bài 20*:
a) Cho p và 2p + 1 là hai số nguyên tố (p>3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
b) Một số chia cho 21 dư 2 và chia 12 dư 5. Hỏi số đó chia cho 84 thì dư bao nhiêu?
Nhớ nhanh lên nhé, đây là các bài trong đề cương của mình, tuần sau mình phải thi học kì 1 rồi!!! Nhanh lên!!! Mình chờ đấy!!!
Tìm số tự nhiên n và abc biết rằng a+b+c=15 và a<b ; b>c ; c>a
1+2+3+...+n=abc
1. Chứng tỏ rằng với mọi số tự nhiên n, các số sau đây là hai số nguyên tố cùng nhau:
a) n+2 và n+3
b) 2n+3 và 3n+5.
2. Tìm số tự nhiên a,b biết ƯCLN (a;b)=4 và a+b=48.
3. Tìm giá trị lớn nhất của biểu thức: C=-(x-5)^2+10.
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
1. Chứng minh 2n+5 và 4n+9 là hai số nguyên tố cùng nhau với mọi số tự nhiên n\
2. Tìm số tự nhiên n biết \(\left(3n+5\right)⋮\left(2n+1\right)\)
3 . Cho a+7b chia hết cho 11. Chứng minh rằng 8a+b chia hết cho 11
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1