Do a ∈ Z + => 5b = a3 + 3a2 + 5 > a + 3 = 5c => 5b > 5c => b>c => 5b 5c => (a3 + 3a2 + 5) ( a+3) => a2 (a+3) + 5 a + 3
Mà a2 (a+3) a + 3 [do (a+3) (a+3)] => 5 a + 3 => a + 3 ∈ Ư (5) => a+ 3 ∈ { ± 1 ; ± 5 } (1) Do a ∈ Z+ => a + 3 ≥ 4 (2) Từ (1) và (2) => a + 3 = 5 => a = 5 – 3 =2
. => 23 + 3 . 22 + 5 = 55 25 = 5b 52 = 5b b = 2 2 + 3 = 5c 5 = 5c 5 = 5c c = 1 Vậy : a = 2 b = 2 c = 1
. => 23 + 3 . 22 + 5 = 55 25 = 5b 52 = 5b b = 2 2 + 3 = 5c 5 = 5c 5 = 5c c = 1 Vậy : a = 2 b = 2 c = 1