Cho a,B,c là3 số nguyên có tổng là 2. CMR (2a+bc)(2b+ca)(2c+ab) là số chính phương
Giả sử a và b là hai số nguyên dương sao cho (a + 2b)(a - b) = 10. Tìm giá trị của 2a - b ?
Cho a,b la số nguyên dương. a+b=1
Tìm GTLN : Q=a/(1+2a) +b/(1+2b)
cho các số thực a,b thỏa mãn a^3 - 2b^3 = ab(a - 2b). Tìm GTNN của biểu thức P = a^2 + b^2 + 2a + 4b + 10
Cho 3 số dương a,b,c thỏa mãn abc=1
tìm GTNN của biểu thức \(p=\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
Cho a,b,c là số thực dương. Biết a+b+c=1
Tìm GTNN của bt :
a) \(A=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
b) \(B=\sqrt{2a^2-3ab+2b^2}+\sqrt{2b^2-3bc+2c^2}+\sqrt{2c^2-3ca+2a^2}\)
a/ Tìm x, y cặp số nguyên không âm (x,y) thoã mãn 3^x-y^3=1
b/ Cho a, b, c thoả mãn a+b+c=0.
Chứng minh N=1-(ab+2c^2)(bc+2a^2)(ca+2b^2) là số dương
Cho 2 số hữu tỉ a, b thỏa mãn đẳng thức a^3b + ab^3 + 2a^2b^2 + 2a + 2b + 1 = 0. Chứng minh rằng 1 - ab là bình phương của một số hữu tỉ
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0