Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiệt Nguyễn

Tìm số hữu tỉ x biết x2 + 5 và x2 - 5 đều là bình phương của các số hữu tỉ.

Kiên-Messi-8A-Boy2k6
21 tháng 5 2019 lúc 14:34

Đặt \(\hept{\begin{cases}x^2+5=a^2\\x^2-5=b^2\end{cases}\Rightarrow x^2+5}-x^2+5=a^2-b^2\)

\(\Rightarrow a^2-b^2=10\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)=10\)

Vì \(\hept{\orbr{\begin{cases}\left(a-b\right)\left(a+b\right)⋮̸2\\\left(a-b\right)\left(a+b\right)⋮4\end{cases}}}\)(do a-b và a+b luôn có cùng số dư khi chia cho 2 )

Vậy không tìm đượcx thỏa mãn x^2+5 và x^2-5 là bình phương của các số hữu tỉ

Quân Tạ Minh
22 tháng 5 2019 lúc 10:16

Vì  x2 + 5 và x2 - 5 đều là bình phương của các số hữu tỉ nên t x2 + 5 = a2 ;x2 - 5 = b2

Lập tích (x2 + 5).(x2 - 5 ) = x2 - 52 = a2 .b2


Các câu hỏi tương tự
nguyễn phan an
Xem chi tiết
GIA CÁT BẢNH
Xem chi tiết
Nguyễn Đăng Quang
Xem chi tiết
Nguyễn Minh Chí Hào
Xem chi tiết
Lê thiện khôi
Xem chi tiết
Nguyen Quoc Huy
Xem chi tiết
Nguyễn Quốc Huy
Xem chi tiết
Huy Hoang
Xem chi tiết
Sabofans
Xem chi tiết