sr nha này : \(\frac{3}{a+\sqrt{3}}-\frac{2}{a-b\sqrt{3}}=7-20\sqrt{3}\)tìm a,b hữu tỉ
sr nha này : \(\frac{3}{a+\sqrt{3}}-\frac{2}{a-b\sqrt{3}}=7-20\sqrt{3}\)tìm a,b hữu tỉ
Biết \(\sqrt{5}\)là số vô tỉ. Hãy tìm các số nguyên a,b thỏa mãn :
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
a, Tìm tất cả các giá trị nguyên của x để A=\(\frac{x^4+x^2+x+2}{x^4+3x^3+7x^2+3x+6}\) cũng là số nguyên.
b, Cho các số dương a,b,c thỏa mãn: a+b+c=4. Tìm GTNN của biểu thức
P=\(\frac{a\sqrt{a}}{\sqrt{a}+3\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{b}+3\sqrt{c}}+\frac{c\sqrt{c}}{\sqrt{c}+3\sqrt{a}}\)
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
Biết \(\sqrt{5}\)là số vô tỉ hãy tìm các giá trị của a ,b thỏa mãn
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Cảm ơn đã đọc và làm ơn giải giùm tui
Tìm các số nguyên a,b thỏa mãn
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Tìm các số hữu tỉ a,b thỏa mãn \(\frac{5}{a+b\sqrt{2}}\)- \(\frac{4}{a-b\sqrt{2}}\)+18\(\sqrt{2}\)=3
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = \(\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}\)
Bài 2: Tìm các số thực \(x\geq 0\) sao cho E = \(\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}\) nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn \(\sqrt{x}+\sqrt{y-2}=2\) và \(\sqrt{y+1}+\sqrt{z-3}=3\) và \(\sqrt{z+5}+\sqrt{x+3}=5\)
Bài 4: CMR \(2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3\)
Bài 5: CMR \(\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2 \)
Làm vài đường cơ bản :)
B1: Tìm a,b nguyên thỏa mãn: \(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)
B2: Cho a,b là các SHT thỏa mãn: \(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\)
CM: \(\sqrt{1+ab}\) cũng là 1 số hữu tỉ
B3: Tìm m để phương trình vô nghiệm: \(\frac{2m-1}{x-2}=m-3\)
Cho a,b,c là 3 số thực dương thỏa mãn điều kiện a+b+b=3. Tìm giá trị nhỏ nhất của \(P=\sqrt{\frac{a+b}{c+ab}}+\sqrt{\frac{b+c}{a+bc}}+\sqrt{\frac{c+a}{b+ca}}\)