Tìm tập các giá trị thực của tham số m để phương trình 4 ( 2 + 1 ) x + 2 - 1 x - m = 0 có đúng hai nghiệm âm phân biệt.
A. (2;4)
B. (3;5)
C. (4;5)
D. (5;6)
Có bao nhiêu giá trị nguyên dương của tham số m để phương trình log 2 2 x 2 + m x + 1 x + 2 + 2 x 2 + m x + 1 = x + 2 có hai nghiệm thực phân biệt
A. 3
B. 1
C. 4
D. 2
Có bao nhiêu giá trị nguyên dương của tham số m để phương trình log 2 2 x 2 + m x + 1 x + 2 + 2 x 2 + m x + 1 = x + 2 có hai nghiệm thực phân biệt?
A. 3.
B. 1.
C. 4.
D. 2.
Có bao nhiêu giá trị nguyên dương của tham số m để phương trình log 2 2 x 2 + m x + 1 x + 2 + 2 x 2 + m x + 1 = x + 2 có hai nghiệm thực phân biệt ?
A. 3.
B. 1.
C. 4.
D. 2.
Cho S là tập hợp các giá trị thực của tham số m để phương trình 2 - x + 1 - x = m + x - x 2 có hai nghiệm phân biệt. Tổng các số nguyên trong S bằng
A. 11.
B. 0.
C. 5.
D. 6.
Cho phương trình ( x + x + 1 ) ( m x + 1 + 1 x + 16 x 2 + x 4 ) = 1 với m là tham số thực. Tìm số các giá trị nguyên của m để phương trình có hai nghiệm thực phân biệt.
Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình 2 + 3 x - m 2 - 3 x = 10 có 2 nghiệm dương phân biệt. Số phần tử của S bằng
A. 12
B. 15
C. 9
D. 4
Với tất cả giá trị nào của tham số m thì phương trình ( m - 10 ) x 2 - 2 ( m - 2 ) x + m - 3 = 0 có hai nghiệm x 1 , x 2 thỏa mãn x 1 + x 2 + x 1 . x 2 < 1
A. 1<m<3.
B. 1<m<2.
C. m>2.
D. m>3.