Ta có: \(2^5+2^{10}+2^{15}+2^{20}=1082400=30.36080\)
\(S=\left(2^5+2^{10}+2^{15}+2^{20}\right)+\left(2^{25}+2^{30}+2^{35}+2^{40}\right)+2^{45}+2^{50}\)
\(=\left(2^5+2^{10}+2^{15}+2^{20}\right)\left(1+2^{20}\right)+2^{45}+2^{30}\)
\(=30.36080\left(2^{20}+1\right)+2^{45}+2^{50}\)
Xét 245 và 250
+220 ≡ 16 (mod 30)
+225 ≡ 2 (mod 30)
+245 = 220 . 225 ≡ 16.2 = 32 ≡ 2 (mod 30)
+250 = (225)2 ≡ 22 ≡ 4 (mod 30)
=> 245 + 250 ≡ 2 + 4 ≡ 6 (mod 30)
=> 245 + 250 chia 30 dư 6.
Suy ra S chia 30 dư 6.