Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2)
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7
=> B chia hết cho 7
Vậy A = 3 + B
nên A chia 7 dư 3