Tìm số đo góc nhọn \(\alpha\),biết:
\(\sin\alpha\times\cos\alpha=\frac{1}{2}\)
Tìm số đo góc nhọn \(\alpha\) Biết
\(\sin\alpha\times\cos\alpha=\frac{1}{2}\)
Cho góc nhọn \(\alpha\):
a) Tìm GTLN của : A =\(\sin\alpha+\cos\alpha\)
b) Tìm GTNN của :B = \(\frac{1}{\sin^2\alpha}+\frac{1}{\cos^2\alpha}\)
tính
a) \(\tan^2\alpha-\sin^2\alpha-\tan^2\alpha\times\sin^2\alpha\)
b)\(\frac{sin^4\alpha-cos^4\alpha}{sin\alpha+cos\alpha}-sin\alpha+cos\alpha\)
TÍNH SỐ ĐO CỦA GÓC NHỌN \(\alpha\)BIẾT:
a)\(\tan\alpha+\cot\alpha=2\)
b)\(7\sin^2\alpha+5\cos^2\alpha\)\(=\frac{13}{2}\)
1. Tìm x, biết:
a. \(\tan x+\cot x=2\)
b. \(\sin x.\cos x=\frac{\sqrt{3}}{4}\)
2.
a. Biết \(\tan\alpha=\frac{1}{3}\)Tính A=\(\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
b. Biết \(\sin\alpha=\frac{2}{3}\)Tính B=\(3.\sin^2\alpha+4.\cos^2\alpha\)
c. Tính C=\(\sin^210^o+\sin^220^o+\sin^270^o+\sin^280^o\)
d. Tính D=\(\tan20^o.\tan35^o.\tan55^o.\tan70^o\)
e. Tính E=\(\sin^6\alpha+\cos^6\alpha+3.\sin^2\alpha.\cos^2\alpha\)
f. Tính F=\(3.\left(\sin^3\alpha+\cos^3\alpha\right)-2.\left(\sin^6\alpha+\cos^6\alpha\right)\)
g. Tính G=\(\sqrt{\sin^4\alpha+4.\cos^2\alpha}+\sqrt{\cos^4\alpha+4.\sin^2\alpha}\)
Mọi người giúp mình với. Mình cảm ơn ạ!
Tinh ti so luong giac sau :
\(\sin\alpha\times\cos\alpha+\frac{\sin^2\alpha}{1+\cot\alpha}+\frac{\cos^2\alpha}{1+\tan\alpha}\)
Các bạn giúp mình những bài này nha. tks nhìu lắm
1.Cho góc nhọn \(\alpha\) Chứng minh
a.\(sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha=1\)
b.\(\frac{1-tan\alpha}{1+tan\alpha}=\frac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)
2. Cho tam giác ABC, cạnh AB=c, BC=a, CA=b và b+c=2a. Chứng minh
a.2sinA=sinB+sinC
b.\(\frac{2}{h_a}=\frac{1}{h_b}+\frac{1}{h_c}\)
3. Cho hình thang ABCD(AB//CD). Biết AB=2cm, AD=5cm, góc CAB=50 và góc CAD=70. Tính chu vi hình thang ABCD
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha\)
a) A = \(\frac{\cot^2\alpha-\cos^2\alpha}{\cot^2\alpha}-\frac{\sin\alpha.\cos\alpha}{\cot\alpha}\)
b) B = \(\left(\cos\alpha-\sin\alpha\right)^2+\left(\cos\alpha+\sin\alpha\right)^2+\cos^4\alpha-\sin^4\alpha-2\cos^2\alpha\)
c) C = \(\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)