Gọi số đó là ab
=> ab = 3 x a x b
=> 10a + b = 3 x a x b
goi so do la ab
=>10a+b=3.a.b(*)
tu (*) =>10a+b chia het cho a,b,3
=>10a chia het cho b,dat 10a=nb
b chia het cho a,dat b= ma
=>10a=n.m.a
=>n.m=10 =>(2,5) (5,2)
(2,5) =>b=5a =>a=1,b=5=> ab=15
(5,2) =>b=2a =>(*)<=>12a=6a^2 =>a=2.b=4 =>ab =24
vay so can tim la 15,24
sorry ấn nhầm
Gọi số cần tìm là ab (ab là số tự nhiên; a, b khác 0). Ta có:
ab = a.b.3
10.a + b = a.b.3
=> ab chia hết cho 3
=> a + b chia hết cho 3
Mà ab chia hết cho a mà 10.a chia hết cho a nên b cũng phải chia hết cho a (Ta cũng có 10.a + b chia hết cho b mà b chia hết cho b nên 10.a cũng chia hết cho b).
=> 10.a có dạng b.k (10>=k>=1) (*)
Thay vào, ta có:
b.k + b = a.b.3
b.(k+1) = a.b.3
k+1 = 3.a
=> k+1 chia hết cho 3
=> k+1 = 3, 6, 9
Thay vào (*)
+ Với k+1 = 3 thì a = 1, khi đó b = 10.1:2 = 5
+ Với k+1 = 6 thì a = 2, khi đó b = 10.2:5 = 4
+ Với k+1 = 9 thì a = 3, khi đó b = 10.3:8 (lẻ)
Vậy ab có 2 kết quả cần tìm là 15 và 24
gọi số đó là ab, ta có:
ab=3.a.b
10a+b=3a.b
3a=10a+b/b=10a/b+1
3a-1=10a/b
b=10a/3a-1
=> ...