số đó có thể là 12,13 hoặc 14
ta xét từng trường hợp một rồi chọn loại từng cái ra để cái nào mà có tích từ 1-15 thì chọn, nếu có hai cái thì chọn cả hai
số đó có thể là 12,13 hoặc 14
ta xét từng trường hợp một rồi chọn loại từng cái ra để cái nào mà có tích từ 1-15 thì chọn, nếu có hai cái thì chọn cả hai
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{n\left(n+1\right)\left(2n+1\right)}{6n}\) là số chính phương.
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\)
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\) .
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\)
Gọi n là số tự nhiên nhỏ nhất lớn hơn 1, thỏa mãn \(\frac{1^2+2^2+...+n^2}{n}\) là số chính phương. Tính \(A=n^5+n^4+n+2015\)
Cho \(a,b\) là các số không âm thỏa mãn \(a^2+b^2=4\). Tìm giá trị lớn nhất của biểu thức \(P=\sqrt[2015]{\frac{ab+a+b+2}{a+b+2}}\)
Cm S sau đây là số chính phương
S= 1/ √1 +√ 2 + 1/√2 +√3 +......+ 1/√99 +√100
Trong mặt phẳng Oxy cho hai đường thẳng có phương trình \(y=-\frac{3}{4}x+2\frac{1}{2}\) (1) và \(y=\frac{4}{5}x+\frac{7}{2}\) (2)
a) Vẽ đồ thị của hai hàm số trên.
b) Tìm tọa độ giao điểm \(A\left(x_A;y_A\right)\) của hai đồ thị trên (Để kết quả dưới dạng phân số)
c) Tính các góc trong tam giác ABC. Trong đó B, C thứ tự là giao điểm của hàm số (1) và hàm số (2) với trục hoành( Lấy nguyên kết quả trên máy).
(Đây là đề Casio nha)
Trong mặt phẳng Oxy cho hai đường thẳng có phương trình \(y=-\frac{3}{4}x+2\frac{1}{2}\) (1) và \(y=\frac{4}{5}x+\frac{7}{2}\) (2)
a) Vẽ đồ thị của hai hàm số trên.
b) Tìm tọa độ giao điểm \(A\left(x_A;y_A\right)\) của hai đồ thị trên (Để kết quả dưới dạng phân số)
c) Tính các góc trong tam giác ABC. Trong đó B, C thứ tự là giao điểm của hàm số (1) và hàm số (2) với trục hoành( Lấy nguyên kết quả trên máy).
(Đây là đề Casio nha)