a) Theo đề bài, ta có:
\(\frac{a}{b}=\frac{a+4}{b+10}\) \(\left(1\right)\)
nên theo tính chất hai phân số bằng nhau, từ \(\left(1\right)\) ta suy ra:
\(a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow\) \(ab+10a=ab+4b\)
\(\Leftrightarrow\) \(10a=4b\)
Do đó, \(\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
b) Vì \(\frac{a+b}{2b}=\frac{2a}{b}\) \(\left(gt\right)\) nên theo tính chất hai phân số bằng nhau, ta có:
\(\left(a+b\right)b=2a.2b\)
\(\Leftrightarrow\) \(ab+b^2=4ab\)
\(\Leftrightarrow\) \(b^2=3ab\) \(\left(2\right)\)
Mà \(b\ne0\) nên từ \(\left(2\right)\) suy ra \(b=3a\) , tức là \(\frac{a}{b}=\frac{1}{3}\)
Vậy, phân số tối giản \(\frac{a}{b}\) cần tìm là \(\frac{1}{3}\)
a/ a/b=(a+4)/(b+10)
=> phân số đó là 4/10
a ) Ta có :\(\frac{a+4}{b+10}=\frac{a+4-a}{b+10-b}=\frac{4}{10}=\frac{2}{5}\)
b ) Ta có : \(\frac{a+b}{b+a}=2\frac{a}{b}=\frac{2a}{b}\)
b ) \(\frac{2a}{b}=\frac{a+b}{2b}\Rightarrow ab+b^2=3ab\Rightarrow b=3a\Rightarrow\frac{a}{b}=\frac{1}{3}\) [ định nghĩa hai phân số bằng nhau ]
Vậy phân số cần tìm là \(\frac{1}{3}\)