(1-\(.\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right)...\left(1-\frac{2}{n.\left(n+1\right)}\right)\)
\(\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)=?\)
Tìm x, biết
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2.\left(x+1\right)}=\frac{99}{100}\)
tính
b=\(\left(\frac{2}{2.3}-1\right).\left(\frac{2}{3.4}-1\right).\left(\frac{2}{4.5}-1\right).....\left(\frac{2}{2008.2009}-1\right)\)
Chứng minh rằng:
1.2 + 2.3 + 3.4 +....+ n.(n+1) = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
1.3 + 3.5 + 5.7 +.....+ n.(n+2)=\(\frac{3+n.\left(n+2\right).\left(n+4\right)}{6}\)
Giúp mk vs
Giair giúp mik nha,cảm ơn các bạn nhìu.
Tính giá trị của các biểu thức sau:
\(C=\left(1+\frac{2}{3}\right).\left(1+\frac{2}{5}\right).\left(1+\frac{2}{7}\right)........\left(1+\frac{2}{2013}\right).\left(1+\frac{2}{2015}\right)\)
\(N=\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^6}{5.2^{28}3^{19}-7.2^{29}.3^{18}}\)
1/ Tính tổng:
M =\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
2/Tìm X:
\(\frac{1}{21}+\frac{1}{28} +\frac{1}{36} +.....+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
3/Tính tích sau rồi tìm số nghịch đảo của kết quả:
\(T=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{11}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{8}\right)\left(1-\frac{1}{10}\right)\)
4/ TÍnh giá trị của biểu thức:
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}\frac{4^2}{4.5}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}......\frac{99^2}{99.100}\)
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)......\left(1+\frac{1}{100}\right)\)
\(\left(\frac{1}{7}+\frac{1}{23}+\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{1009}\right)+1:\left(30.1009-160\right)\)
đề bài tính nhanh
Cho P=\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{4033}{\left(2016.2017\right)^2}\)
Chứng minh rằng P<1