Tìm n ∈ N để
a) \(\dfrac{2n^4-3n^2+n-2}{n-1}\) ∈ N (n≠1)
b) \(\dfrac{-3n^3+2n^2-n-2}{n+2}\) ∈ Z (n≠-2)
Cho phương trình:x^2-6x+2n-3=0 (với n là tham số ) (1)
1) Giải phương trình (1) với n=4
2) Tìm n để phương trình (1) có hai nghiệm phân biệt x1;x2 thỏa mãn:
(x1^2 -5x1 +2n -4)(x2^2 - 5x2 +2n-4)=-4
Tìm n để A= 2n3 + 2n2 + 2n + 7 là số chính phương ( n thuộc Z )
xác định số tự nhiên n để a\(_n\)=n^4+2n^3+2n^2+n+7 là số chính phương
Cho pt : x^2 - 6x + 2n - 3=0 (1)
Tìm n để pt (1) có hai nghiệm phân biệt x1:x2 thỏa
(x1^2 - 5x1 + 2n - 4)(x2^2 - 5x2 + 2n - 4)=-4
tìm tất cả các số tự nhiên n sao cho n^7 -n^5+2n^4+n^3-n^2+1 có đúng 1 ước nguyên tố
Tìm tất cả số nguyên \(n\) sao cho \(a=n^4+2n^3+2n^2+n+7\)là số chính phương.
cho n là số tự nhiên khác 0 CMR A = 2^n + 11^n -2^2n -3^2n chia hết cho 14
Tìm tất cả các số nguyên n sao cho n4+2n3+2n2+n+7 là số chính phương