\(2n^2-7n+4⋮2n+1\)
\(2n^2+n-8n-4+8⋮2n+1\)
\(n\left(2n+1\right)-4\left(2n+1\right)+8⋮2n+1\)
\(\left(2n+1\right)\left(n-4\right)+8⋮2n+1\)
Vì \(\left(2n+1\right)\left(n-4\right)⋮2n+1\)
\(\Rightarrow8⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Mà n thuộc Z và 2n + 1 là số lẻ nên \(2n+1\in\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{0;-1\right\}\)
Vậy..........