TH1: n = 2k+1 (k∈N) (tức là n lẻ)
\(23^n\)+1971 chia 3 dư 2 => không là số chính phương
TH2: n=2k (tức là n chẵn)
\(^{23^n}\)+1971= \(23^{2k}\)+1971=> \(a^2\)(a−\(23^k\))(a+\(23^k\))= 1971 = 1.1971= 27.73
(a và 23 không chia hết cho 3 nên ta loại bớt trường hợp a−\(23^k\) , a+\(23^k\) đồng thời chia hết 3)
Giải hệ phương trình trên, được k=1 hay n=2