Đáp án: =0
Giải thích các bước giải:x=y=z=0
#Châu's ngốc
Ta có : \(x+y+z=xyz\)(1)
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét \(x\le y\le z\)
Vì x, y, z nguyên dương nên \(xyz\ne0\), do \(x\le y\le z\)
\(\Rightarrow xyz=x+y+z\le3z\)
\(\Rightarrow xy\le3\)
.\(\Rightarrow xy\in\left\{1;2;3\right\}\)
Nếu xy = 1 => x = y = 1, thay vào (1) ta có : 2 + z = z (vô lí)
Nếu xy = 2, do x \(\le\) y nên x = 1 và y = 2, thay vào (1) => z = 3.
Nếu xy = 3, do x \(\le\) y nên x = 1 và y = 3, thay vào (1) => z = 2.
Vậy nghiệm nguyên dương của phương trình (1) là các hoán vị của (1 ; 2 ; 3).