\(19x^2+28y^2=729\)
\(\Leftrightarrow18x^2+27y^2+x^2+y^2=3.243=9.81\)
\(\Rightarrow\left(x^2+y^2\right)⋮3\Rightarrow x,y⋮3\)
(vì a^2 chia cho 3 dư 1)
đặt x = 3u, y =3v thay vào pt:
19.(3u)^2 + 28(3v)^2 = 9.81
=> 19u^2 + 28.v^2 = 81
lập luận tương tự: đặt u = 3u1, v =3v1, ta có:
19(3.u1)^2 + 28(3.v1)^2 = 9.9
=> 19u1^2 + 28v1^2 = 9
tượng tự: đặt u1 = 3.u2, v1 = 3.v2, ta có:
19.(3.u2)^2 + 28(3.v2)^2 = 9
=> 19u2^2 + 28v2^2 = 1 pt nầy vô nghiệm
vậy pt đã cho không có nghiệm nguyên