Ta có \(f\left(x\right)=\frac{1}{2}x^2+\frac{3}{4}x\)
Khi f (x) = 0
=> \(\frac{1}{2}x^2+\frac{3}{4}x=0\)
=> \(\frac{1}{2}x\left(x+\frac{3}{2}x\right)=0\)
=> \(\orbr{\begin{cases}\frac{1}{2}x=0\\x+\frac{3}{2}x=0\end{cases}}\)=> \(\orbr{\begin{cases}\frac{1}{2}x=0\\\frac{5}{2}x=0\end{cases}}\)=> x = 0
Vậy f (x) có 1 nghiệm là x = 0.