\(3x^2+1x=0\)
\(\Rightarrow\)\(3x^2+1x=0\)
\(\Rightarrow\)\(x\left(3x+1\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\3x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}}\)
Vậy \(x=0\)và \(x=\frac{-1}{3}\)là nghiệm của đa thức \(3x^2+1x\)
3x2+x=0
\(\Rightarrow\)x(3x+1)=0
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\3x=-1\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)
kết luận