Ta có: \(1+2+3+...+n=820\)
\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=820\)
\(\Leftrightarrow n\left(n+1\right)=1640\)
\(\Leftrightarrow n^2+n-1640=0\)
\(\Leftrightarrow n^2-40n+41n-1640=0\)
\(\Leftrightarrow n\left(n-40\right)+41\left(n-40\right)=0\)
\(\Leftrightarrow\left(n-40\right)\left(n+41\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n-40=0\\n+41=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=40\\n=-41\left(loai\right)\end{cases}}\)
Vậy n=40