2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 => 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
TH1: n+1=1 => n=0 thuộc Z
TH2: n+1=-1 => n=-2 thuộc Z
TH3: n+1=5 => n=4 thuộc Z
TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
\(\left(2n+1\right)⋮n-3\)
\(\Rightarrow2\left(n-3\right)+7⋮n-3\)
Vì \(2\left(n-3\right)⋮n-3\Rightarrow7⋮n-3\)
\(\Rightarrow n-3\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;7;-1;-7\right\}\)
\(\Rightarrow n-3\in\left\{1;7;-1;-7\right\}\)
\(\Rightarrow n\in\left\{4;10;2;-4\right\}\)
(2n+1)⋮n−3
⇒2(n−3)+7⋮n−3
Vì 2(n−3)⋮n−3⇒7⋮n−3
⇒n−3∈Ư(7)
Mà Ư(7)={1;7;−1;−7}
⇒n−3∈{1;7;−1;−7}
⇒n∈{4;10;2;−4}