\(Ta \) \(có : \) \(2016n^2 + 2016n + 2 \)\(⋮\)\(n + 1\)
\(\Leftrightarrow\)\(2016n (n + 1 ) + 2\)\(⋮\)\(n + 1\)
\(\Leftrightarrow\)\(n + 1 \) \(\in\)\(Ư\)\(( 2 ) \) \(= \) { \(1 ; 2 \) }
Ta lập bảng :
\(n + 1 \) | \(1\) | \(2\) |
\(n\) | \(0\) | \(1\) |
Vì n \(\in\)\(ℕ^∗\)nên ta chọn n = 1
Vậy : n \(\in\){ 1 }
1.Tìm n thuộc N biết :
n2+3n+4 chia hết cho n+3
2.Chứng minh:
A=21+22+23+24+....+2120 chia hết cho 7