\(\left(3n+2\right)⋮\left(n-1\right)\)
\(\Rightarrow\left(3n-3+5\right)⋮\left(n-1\right)\)
\(\Rightarrow5⋮\left(n-1\right)\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)
n-1 chia hết cho n-1 => 3n-3 chia hết cho n-1
3n+2 chia hết cho n-1
=>(3n+2)-(3n-3) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc -5;-1;1;5
TH1: n=-5 => n=-4(loại)
TH2: n=-1 => n=0(TM)
TH3: n=1 => n=2(TM)
TH4: n=5 => n=6(TM)
ta co : 3n + 2 = 3(n-1)+5
Vi 3(n-1)+5 chia het cho n-1
De 3n + 2 chia het cho n-1 suy ra 3(n-1)+ 5 chia het cho n-1
suy ra : 5 chia het cho n-1
suy ra n-1 thuoc U(5)={1;5}
n-1=1
n=1+1=2
n-1 =5
n=5+1=6
vay n = 2 hoac n = 6 thi 3n+2 chia het cho n-1