Ta có:2n+5=2n+2+3=2(x+1)+3
Để 2n+5 chia hết cho n+1 thì 3 chia hết cho n+1
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Rightarrow n\in\left\{-4,-2,0,2\right\}\).Vì n\(\in N\) nên n\(\in\left\{0,2\right\}\) thoả mãn
Vậy............
Ta co:2n+5chia het cho n+1
vay:2(n+1)+4 chia het cho n+1
4 chia het cho n+1( Vi 2(n+1) chia het cho n+1)
suy ra :n+1 thuoc U(4)=\(\hept{\begin{cases}\\\end{cases}1;2;4}\)
Lap bang gia tri
n+1 1 2 4
n 0 1 3
C/L Chon Chon Chon
vay voi n=0;1;3 thi 2n+5 chia het cho n+1
\(2n+5⋮n+1\Leftrightarrow2\left(n+1\right)+3⋮n+1\)
\(\Rightarrow3⋮n+1\) ( vì 2(n+1) chia hết cho n+1)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
\(n+1=1\Rightarrow n=0\)
\(n+1=3\Rightarrow n=2\)
Vậy \(n\in\left\{0;2\right\}\)