Xét các trường hợp :
- Với n \(\ge\) 2 thì 2n chia hết cho 4 => 2n + 15 = 2n + 4 . 3 + 3 chia 4 dư 3 (sai vì số chính phương chia hết cho 4 hoặc chia 4 dư 1) , loại
- Với n =1 => 2n + 15= 17, loại
- Với n = 0 => 2n + 15=16 , chọn
Vậy n = 0 là thỏa mãn điều kiện để 2n + 15 là số chính phương.
Bài gải:
Chia n làm 3 trường hợp:
Trườn hợp 1: n=0
Trường hợp 2: n=1
Trường hợp 3: n>1
Với n>=2 thì 2^n chia hết cho 4=> 2^n + 15 chia 4 dư 3 ( vô lí vì số chính phương chia hết cho 4 hoặc chia 4 dư 1) --> Loại.
Với n=1 => 2^n+15= 17 --> Loại.
Với n=0 => 2^n+15=16 --> Thỏa mãn.
Vậy chỉ có n=0 là thỏa mãn điều kiện để 2^n+15 là số chính phương.