\(n^3-4n^2+4n-1\)
\(=\left(n^3-1\right)-\left(4n^2-4n\right)\)
\(=\left(n-1\right)\left(n^2+n+1\right)-4n\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2-3n+1\right)\)
Ta có: \(n^3-4n^2+4n-1=\left(n-1\right)\left(n^2-3n+1\right)\)
nên sẽ phải có 1 số trong tích trên bằng 1 và 1 số bằng chính snt đó
\(\Rightarrow\orbr{\begin{cases}n-1=1\\n\left(n-3\right)=0\end{cases}}\)
Các giá trị trên ko thỏa để n là snt
=> ko có giá trị n cần tìm