\(\sqrt{1+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}}=1-\frac{1}{n}+\frac{1}{n-1}\) dựa vào mà làm
\(\sqrt{1+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}}=\sqrt{\left(1-\frac{1}{n}\right)^2+\frac{2}{n}+\frac{1}{\left(n-1\right)^2}}\)
\(=\sqrt{\frac{\left(n-1\right)^2}{n^2}+\frac{2}{n}+\frac{1}{\left(n-1\right)^2}}\)
\(\sqrt{\left(\frac{n-1}{n}+\frac{1}{n-1}^2\right)}=1-\frac{1}{n}+\frac{1}{n-1}\)
Áp dụng đẳng thức vừa chứng minh vào phương trình trên ta được:
\(1-\frac{1}{3}+\frac{1}{2}+1-\frac{1}{4}+\frac{1}{3}+...+1-\frac{1}{n}+\frac{1}{n-1}=2001\frac{2001}{4006}\)
<=>(1+1+1+...+1(n-2 số 1))\(+\frac{1}{2}-\frac{1}{n}=2001\frac{2001}{4006}\)
<=>\(n-2+\frac{1}{2}-\frac{1}{n}=2001\frac{2001}{4006}\)
=>4006n.(n-2)+2003n-4006=8018007
=>4006n2-8012n+2003n-4006=8018007
=>4006n2-6009n-8022013=0
@@số to thế
đến bước chỉ còn ẩn n thì bấm máy tính nhé_ kết quả n= 2003