\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x\left(x+2\right)}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\)
\(=1-\frac{1}{x+2}\frac{1}{2016}\Rightarrow x+2
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x\left(x+2\right)}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\)
\(=1-\frac{1}{x+2}\frac{1}{2016}\Rightarrow x+2
Tìm x thuộc N, biết:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{8}{17}\)
Tìm n biết:
\(\frac{1}{2}\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)=\frac{2013}{2014}\)
Với \(n\in\)N*
cmr\(B=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
Chứng minh rằng với mọi n \(\inℕ^∗\):
D = \(\frac{1}{1.2}\frac{1}{2.3}\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}< 1\)
F = \(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
Tìm x nguyên biết: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{16}{34}\)
a) tìm x,y biết \(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)
b) tìm x,y,z biết \(|x-6|+|x-10|+|x-2022|+|y-2014|+|z-2015|=2016\)
c) chứng minh \(chứng minh:3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(n\in N,n\ne0\right)\)
Tim n thuộc N
A = \(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{n\times\left(n+2\right)}<\frac{2015}{2016}\)
Tìm số tự nhiên x thoả mãn \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{16}{34}\)
tìm số nguyên x thỏa mãn: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.........+\frac{1}{x\left(x+2\right)}=\frac{16}{34}\)
Trả lời: x=