muốn tìm n thì phải có 2 về chứ bạn
muốn tìm n thì phải có 2 về chứ bạn
\(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{\left(2n-1\right).\left(2n+1\right)}\)
A =\(\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\) B=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right).\left(2n+1\right)}\)
Tìm số tự nhiên x, biết:
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
Rút gọn :\(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}+\frac{1}{2n\left(2n+2\right)}\)
Cho \(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}+\frac{1}{2n\left(2n+2\right)}\)
a, Chứng minh \(A< \frac{3}{2}\) b, Tìm n để \(A=\frac{175}{132}\)
CMR với mọi số tự nhiên n>2 thì :
a)\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)<\(\frac{1}{2}\)
b)\(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}\)<\(\frac{1}{4}\)
c)\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{\left(2n+1\right)^2}\right)\)<2
Tìm x biết:
a)\(\frac{x-1}{21}=\frac{3}{x+1}\)
b)\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\)\(\frac{4}{41.45}=\frac{29}{45}\)
c)\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\)\(\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
tìm x
A=\(\frac{1}{3}\) +\(\frac{1}{6}\)+\(\frac{1}{10}\)+...........+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{1998}{2000}\)
B=\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+\(\frac{1}{7.9}\)+..........+\(\frac{1}{\left(2x+1\right)\left(2x+3\right)}\)=\(\frac{15}{93}\)
Tìm x biết
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)