vì n+4 và n+11 đều là số chính phương nên có hệ
\(\hept{\begin{cases}n+4=a^2\\n+11=b^2\end{cases}}\)trừ phương trình ta có :\(b^2-a^2=7\Leftrightarrow\left(b-a\right)\left(b+a\right)=7\) do đó b-a và b+a là ước của 7 nên
\(\hept{\begin{cases}a+b=7\\b-a=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=4\end{cases}\Leftrightarrow}\hept{\begin{cases}n+4=9\\n+11=16\end{cases}\Leftrightarrow}n=5}\)n+4 và n+11 là các số chính phương
=> \(n+4=a^2\) ; \(n+11=b^2\)(*)
Do \(n+11>n+4\)=> \(b^2>a^2\)( a và b là số tự nhiên )
Có \(b^2-a^2=\left(n+11\right)-\left(n+4\right)\)
=>\(\left(b+a\right)\left(b-a\right)=n+11-n-4\)
=> \(\left(b+a\right)\left(b-a\right)=7\)
Ta có ước tự nhiên của 7 là các số: 1;7 (7 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có:
\(\left(b+a\right)=7;\left(b-a\right)=1\)
Cộng hai về b+a và b-a ta được:
\(\left(b+a\right)+\left(b-a\right)=7+1\)
=> \(b+a+b-a=8\)
=>\(2b=8\)
=>\(b=4\)
Thay b=4 vào (*) ta được :
\(n+11=b^2\)=> \(n+11=4^2=16\)=> \(n=16-11=5\)
Vậy n=5 thì n+4 và n+11 là các số chính phương.
Trời, bài này làm theo cách lớp 6 mà lại làm cách lớp 8,9 hết zậy???