Đặt \(4n^2+2002=k^2\)( k thuộc Z )
\(\Rightarrow2002=k^2-4n^2=k^2-\left(2n\right)^2=\left(k+2n\right)\left(k-2n\right)\)
mà 2002 chia hết cho 2 => hoặc k + 2n chia hết cho 2 hoặc k - 2n chia hết cho 2
Mặt khác k + 2n + k - 2n = 2k chia hết cho 2 => k + 2n và k - 2n cùng tính chẵn lẻ
=> k + 2n và k - 2n cùng chia hết cho 2
=> ( k + 2n ) ( k - 2n ) chia hết cho 4
Mà 2002 không chia hết cho 4 ( vô lí )
=> n thuộc rỗng
Ta có: 4n2+2002=a2
Với điều kiện a(chẵn)
vì 4n2 chắc chắn là số chẵn
Ta có 4n2 luôn luôn chia hết cho 4
và 4n>44 suy ra n>11
4n2+2002=a2
a2-4n2=2002
a2-n2.42=2002
a2-n2.16=2002
a.a-n.n.16=2002
(a+n).(a-n.16)=2002
Do 2002 chia hết cho 2 nên
1 trong 2 thừa số:
a+n hoặc a-n.16 chia hết cho 2
a-n.16-a+n=-17n
chỉ chia hết cho 1 và 17 mà 2002 chia hêt cho 2
suy ra ko có n thỏa mãn
CẢM ƠN CÁC BẠN NHIỀU . CHÚNG TA KẾT BẠN CHỨ
MÌNH CÓ CÁCH KHÁC CÁC BẠN XEM CÓ ĐÚNG KO
4X^2 +2002=A^2
A^2- 2X^2=2002
[A+2X] NHAN[A-2X] =2002
MÀ 2 SỐ KIA ĐỀU CHẤN
MÀ 2002 KO BẰNG TÍCH 2 SỐ CHẴN
VAY KO CO N