\(1,\left(n+2\right)⋮\left(n+1\right)\)
2 ,\(8⋮\left(n-2\right)\)
3,\(\left(2n+1\right)⋮\left(6-n\right)\)
4;\(3n⋮\left(n-1\right)\)
5, \(\left(3n+5\right)⋮\left(2n+1\right)\)
6, \(\left(3n+1\right)⋮\left(2n-1\right)\)
Tìm n, biết \(\frac{2}{3n}=\frac{6}{3\left(n+4\right)}\)
tìm số tự nhiên n biết
a) \(3⋮n\)
b)\(5⋮\left(n-1\right)\)
c)\(6⋮\left(2n+1\right)\)
d)\(n+4⋮\left(n-1\right)\)
e)\(\left(2n+4\right)⋮\left(n-1\right)\)
f)\(\left(3n+2\right)⋮\left(n-1\right)\)
g)\(\left(a^2+1\right)⋮\left(n-1\right)\)
h)\(\left(n^2+2n+7\right)⋮\left(n+2\right)\)
AI MHAMH MÌNH TICK RIÊNG CÂU H THÌ CHỨNG MINH HỌ MÌNH
tìm số nguyên n
a,\(\left(3n-2n\right)⋮\left(n+1\right)\)
b, \(\left(2n-4\right)⋮\left(n+2\right)\)
Tìm các số nguyên n thỏa mãn :
a)\(\left(n+5\right)⋮\left(n-2\right)\)
b)\(\left(2n+1\right)⋮\left(n-5\right)\)
c) \(\left(n^2+3n-13\right)⋮n+3\)
d)\(\left(n^2+3\right)⋮\left(n-1\right)\)
Tìm \(n\in N\)để:
a/ \(\left(n+8\right)⋮n\)
b/ \(5⋮\left(n+3\right)\)
c/ \(\left(n+8\right)⋮\left(n+3\right)\)
d/ \(3n+13⋮n+2\)
e/ \(\left(5n+2\right)⋮\left(9-2n\right)\)
Tìm số tự nhiên n, biết :
a/ \(\left(2.n-1\right)^4:\left(2.n-1\right)=27\)
b/ \(\left(2n+1\right)^5:\left(2.n+1\right)^2=1\)
c/ \(\left(n+1\right)^3:\left(n+1\right)=4\)
d/ \(\left(21+n\right):9=9^5:9^4\)
Tại sao: \(\left(n-1\right)^3+n^3+\left(n+1\right)^3=3n^3-3n+18n+9n^2+9\)
chứng tỏ rằng với mọi n thuộc N* ta có :
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)