\(\frac{1}{3}^{2n-1}=243\)
\(< =>\frac{1}{3}^{n+n}=\frac{243}{3}=81\)
\(< =>\frac{1}{3^{n+n}}=81\)
\(< =>81.3^n.3^n=1\)
\(< =>3^{2n}=\frac{1}{81}\)
\(< =>3^{2n}=3^{-4}\)
\(< =>x=-2\)
Bài làm:
a) \(\left(\frac{1}{3}\right)^{2n-1}=243\)
\(\Leftrightarrow3^{1-2n}=3^5\)
\(\Rightarrow1-2n=5\)
\(\Leftrightarrow2n=-4\)
\(\Rightarrow n=-2\)
b) \(\left(0,125\right)^{n+1}=64\)
\(\Leftrightarrow\left(\frac{1}{8}\right)^{n+1}=8^2\)
\(\Rightarrow-n-1=2\)
\(\Rightarrow n=-3\)
\(\left(0,125\right)^{n+1}=64\)
\(< =>\left(\frac{1}{8}\right)^{x+1}=\left(\frac{1}{8}\right)^{-2}\)
\(< =>x+1=-2\)
\(< =>x=-2-1=-3\)
a, \(\left(\frac{1}{3}\right)^{2n-1}=243\Leftrightarrow3^{1-2n}=3^5\)
\(\Leftrightarrow1-2n=5\Leftrightarrow2x=-4\Leftrightarrow x=-2\)
b, \(\left(0,125\right)^{n+1}=64\Leftrightarrow3^{1-2n}=3^5\)
\(\Leftrightarrow1-2n=5\Leftrightarrow2n=6\Leftrightarrow n=3\)