\(A=11+11^2+........+11^{2015}\)
\(11A=11^2+11^3+.....+11^{2016}\)
\(11A-A=10A=\left(11^2-11^2\right)+......+\left(11^{2015}-11^{2015}\right)+\left(11^{2016}-11\right)\)
\(A=\frac{11^{2016}-11}{10}\)
=> \(10A+11=11^n=\frac{11^{2016}-11}{10}.10+11=11^{2016}\)
Vậy n = 2016